Llama2Chat
This notebook shows how to augment Llama-2 LLMs with the Llama2Chat
wrapper to support the Llama-2 chat prompt
format.
Several LLM implementations in LangChain can be used as interface to
Llama-2 chat models. These include
HuggingFaceTextGenInference,
LlamaCpp,
GPT4All,
…, to mention a few examples.
Llama2Chat is a generic wrapper that implements BaseChatModel and
can therefore be used in applications as chat
model.
Llama2Chat converts a list of chat
messages
into the required chat prompt
format and
forwards the formatted prompt as str to the wrapped LLM.
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain_experimental.chat_models import Llama2Chat
For the chat application examples below, we’ll use the following chat
prompt_template:
from langchain.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    MessagesPlaceholder,
)
from langchain.schema import SystemMessage
template_messages = [
    SystemMessage(content="You are a helpful assistant."),
    MessagesPlaceholder(variable_name="chat_history"),
    HumanMessagePromptTemplate.from_template("{text}"),
]
prompt_template = ChatPromptTemplate.from_messages(template_messages)
Chat with Llama-2 via HuggingFaceTextGenInference LLM
A HuggingFaceTextGenInference LLM encapsulates access to a text-generation-inference server. In the following example, the inference server serves a meta-llama/Llama-2-13b-chat-hf model. It can be started locally with:
docker run \
  --rm \
  --gpus all \
  --ipc=host \
  -p 8080:80 \
  -v ~/.cache/huggingface/hub:/data \
  -e HF_API_TOKEN=${HF_API_TOKEN} \
  ghcr.io/huggingface/text-generation-inference:0.9 \
  --hostname 0.0.0.0 \
  --model-id meta-llama/Llama-2-13b-chat-hf \
  --quantize bitsandbytes \
  --num-shard 4
This works on a machine with 4 x RTX 3080ti cards, for example. Adjust
the --num_shard value to the number of GPUs available. The
HF_API_TOKEN environment variable holds the Hugging Face API token.
# !pip3 install text-generation
Create a HuggingFaceTextGenInference instance that connects to the
local inference server and wrap it into Llama2Chat.
from langchain.llms import HuggingFaceTextGenInference
llm = HuggingFaceTextGenInference(
    inference_server_url="http://127.0.0.1:8080/",
    max_new_tokens=512,
    top_k=50,
    temperature=0.1,
    repetition_penalty=1.03,
)
model = Llama2Chat(llm=llm)
Then you are ready to use the chat model together with
prompt_template and conversation memory in an LLMChain.
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
chain = LLMChain(llm=model, prompt=prompt_template, memory=memory)
print(
    chain.run(
        text="What can I see in Vienna? Propose a few locations. Names only, no details."
    )
)
 Sure, I'd be happy to help! Here are a few popular locations to consider visiting in Vienna:
1. Schönbrunn Palace
2. St. Stephen's Cathedral
3. Hofburg Palace
4. Belvedere Palace
5. Prater Park
6. Vienna State Opera
7. Albertina Museum
8. Museum of Natural History
9. Kunsthistorisches Museum
10. Ringstrasse
print(chain.run(text="Tell me more about #2."))
 Certainly! St. Stephen's Cathedral (Stephansdom) is one of the most recognizable landmarks in Vienna and a must-see attraction for visitors. This stunning Gothic cathedral is located in the heart of the city and is known for its intricate stone carvings, colorful stained glass windows, and impressive dome.
The cathedral was built in the 12th century and has been the site of many important events throughout history, including the coronation of Holy Roman emperors and the funeral of Mozart. Today, it is still an active place of worship and offers guided tours, concerts, and special events. Visitors can climb up the south tower for panoramic views of the city or attend a service to experience the beautiful music and chanting.
Chat with Llama-2 via LlamaCPP LLM
For using a Llama-2 chat model with a
LlamaCPP
LMM, install the llama-cpp-python library using these installation
instructions.
The following example uses a quantized
llama-2-7b-chat.Q4_0.gguf
model stored locally at ~/Models/llama-2-7b-chat.Q4_0.gguf.
After creating a LlamaCpp instance, the llm is again wrapped into
Llama2Chat
from os.path import expanduser
from langchain.llms import LlamaCpp
model_path = expanduser("~/Models/llama-2-7b-chat.Q4_0.gguf")
llm = LlamaCpp(
    model_path=model_path,
    streaming=False,
)
model = Llama2Chat(llm=llm)
llama_model_loader: loaded meta data with 19 key-value pairs and 291 tensors from /home/martin/Models/llama-2-7b-chat.Q4_0.gguf (version GGUF V2)
llama_model_loader: - tensor    0:                token_embd.weight q4_0     [  4096, 32000,     1,     1 ]
llama_model_loader: - tensor    1:           blk.0.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor    2:            blk.0.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor    3:            blk.0.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor    4:              blk.0.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor    5:            blk.0.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor    6:              blk.0.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    7:         blk.0.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    8:              blk.0.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    9:              blk.0.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   10:           blk.1.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   11:            blk.1.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   12:            blk.1.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   13:              blk.1.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   14:            blk.1.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   15:              blk.1.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   16:         blk.1.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   17:              blk.1.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   18:              blk.1.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   19:          blk.10.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   20:           blk.10.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   21:           blk.10.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   22:             blk.10.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   23:           blk.10.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   24:             blk.10.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   25:        blk.10.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   26:             blk.10.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   27:             blk.10.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   28:          blk.11.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   29:           blk.11.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   30:           blk.11.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   31:             blk.11.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   32:           blk.11.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   33:             blk.11.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   34:        blk.11.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   35:             blk.11.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   36:             blk.11.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   37:          blk.12.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   38:           blk.12.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   39:           blk.12.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   40:             blk.12.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   41:           blk.12.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   42:             blk.12.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   43:        blk.12.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   44:             blk.12.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   45:             blk.12.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   46:          blk.13.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   47:           blk.13.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   48:           blk.13.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   49:             blk.13.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   50:           blk.13.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   51:             blk.13.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   52:        blk.13.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   53:             blk.13.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   54:             blk.13.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   55:          blk.14.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   56:           blk.14.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   57:           blk.14.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   58:             blk.14.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   59:           blk.14.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   60:             blk.14.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   61:        blk.14.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   62:             blk.14.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   63:             blk.14.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   64:          blk.15.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   65:           blk.15.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   66:           blk.15.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   67:             blk.15.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   68:           blk.15.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   69:             blk.15.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   70:        blk.15.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   71:             blk.15.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   72:             blk.15.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   73:          blk.16.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   74:           blk.16.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   75:           blk.16.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   76:             blk.16.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   77:           blk.16.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   78:             blk.16.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   79:        blk.16.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   80:             blk.16.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   81:             blk.16.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   82:          blk.17.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   83:           blk.17.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   84:           blk.17.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   85:             blk.17.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   86:           blk.17.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   87:             blk.17.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   88:        blk.17.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   89:             blk.17.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   90:             blk.17.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   91:          blk.18.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   92:           blk.18.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   93:           blk.18.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   94:             blk.18.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   95:           blk.18.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   96:             blk.18.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   97:        blk.18.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   98:             blk.18.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   99:             blk.18.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  100:          blk.19.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  101:           blk.19.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  102:           blk.19.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  103:             blk.19.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  104:           blk.19.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  105:             blk.19.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  106:        blk.19.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  107:             blk.19.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  108:             blk.19.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  109:           blk.2.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  110:            blk.2.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  111:            blk.2.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  112:              blk.2.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  113:            blk.2.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  114:              blk.2.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  115:         blk.2.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  116:              blk.2.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  117:              blk.2.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  118:          blk.20.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  119:           blk.20.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  120:           blk.20.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  121:             blk.20.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  122:           blk.20.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  123:             blk.20.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  124:        blk.20.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  125:             blk.20.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  126:             blk.20.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  127:          blk.21.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  128:           blk.21.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  129:           blk.21.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  130:             blk.21.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  131:           blk.21.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  132:             blk.21.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  133:        blk.21.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  134:             blk.21.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  135:             blk.21.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  136:          blk.22.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  137:           blk.22.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  138:           blk.22.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  139:             blk.22.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  140:           blk.22.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  141:             blk.22.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  142:        blk.22.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  143:             blk.22.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  144:             blk.22.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  145:          blk.23.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  146:           blk.23.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  147:           blk.23.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  148:             blk.23.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  149:           blk.23.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  150:             blk.23.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  151:        blk.23.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  152:             blk.23.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  153:             blk.23.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  154:           blk.3.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  155:            blk.3.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  156:            blk.3.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  157:              blk.3.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  158:            blk.3.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  159:              blk.3.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  160:         blk.3.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  161:              blk.3.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  162:              blk.3.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  163:           blk.4.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  164:            blk.4.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  165:            blk.4.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  166:              blk.4.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  167:            blk.4.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  168:              blk.4.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  169:         blk.4.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  170:              blk.4.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  171:              blk.4.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  172:           blk.5.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  173:            blk.5.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  174:            blk.5.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  175:              blk.5.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  176:            blk.5.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  177:              blk.5.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  178:         blk.5.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  179:              blk.5.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  180:              blk.5.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  181:           blk.6.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  182:            blk.6.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  183:            blk.6.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  184:              blk.6.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  185:            blk.6.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  186:              blk.6.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  187:         blk.6.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  188:              blk.6.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  189:              blk.6.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  190:           blk.7.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  191:            blk.7.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  192:            blk.7.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  193:              blk.7.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  194:            blk.7.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  195:              blk.7.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  196:         blk.7.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  197:              blk.7.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  198:              blk.7.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  199:           blk.8.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  200:            blk.8.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  201:            blk.8.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  202:              blk.8.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  203:            blk.8.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  204:              blk.8.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  205:         blk.8.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  206:              blk.8.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  207:              blk.8.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  208:           blk.9.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  209:            blk.9.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  210:            blk.9.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  211:              blk.9.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  212:            blk.9.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  213:              blk.9.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  214:         blk.9.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  215:              blk.9.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  216:              blk.9.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  217:                    output.weight q6_K     [  4096, 32000,     1,     1 ]
llama_model_loader: - tensor  218:          blk.24.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  219:           blk.24.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  220:           blk.24.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  221:             blk.24.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  222:           blk.24.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  223:             blk.24.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  224:        blk.24.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  225:             blk.24.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  226:             blk.24.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  227:          blk.25.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  228:           blk.25.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  229:           blk.25.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  230:             blk.25.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  231:           blk.25.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  232:             blk.25.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  233:        blk.25.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  234:             blk.25.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  235:             blk.25.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  236:          blk.26.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  237:           blk.26.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  238:           blk.26.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  239:             blk.26.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  240:           blk.26.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  241:             blk.26.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  242:        blk.26.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  243:             blk.26.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  244:             blk.26.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  245:          blk.27.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  246:           blk.27.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  247:           blk.27.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  248:             blk.27.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  249:           blk.27.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  250:             blk.27.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  251:        blk.27.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  252:             blk.27.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  253:             blk.27.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  254:          blk.28.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  255:           blk.28.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  256:           blk.28.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  257:             blk.28.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  258:           blk.28.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  259:             blk.28.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  260:        blk.28.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  261:             blk.28.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  262:             blk.28.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  263:          blk.29.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  264:           blk.29.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  265:           blk.29.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  266:             blk.29.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  267:           blk.29.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  268:             blk.29.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  269:        blk.29.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  270:             blk.29.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  271:             blk.29.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  272:          blk.30.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  273:           blk.30.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  274:           blk.30.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  275:             blk.30.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  276:           blk.30.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  277:             blk.30.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  278:        blk.30.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  279:             blk.30.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  280:             blk.30.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  281:          blk.31.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  282:           blk.31.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  283:           blk.31.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  284:             blk.31.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  285:           blk.31.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  286:             blk.31.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  287:        blk.31.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  288:             blk.31.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  289:             blk.31.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  290:               output_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - kv   0:                       general.architecture str     
llama_model_loader: - kv   1:                               general.name str     
llama_model_loader: - kv   2:                       llama.context_length u32     
llama_model_loader: - kv   3:                     llama.embedding_length u32     
llama_model_loader: - kv   4:                          llama.block_count u32     
llama_model_loader: - kv   5:                  llama.feed_forward_length u32     
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32     
llama_model_loader: - kv   7:                 llama.attention.head_count u32     
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32     
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32     
llama_model_loader: - kv  10:                          general.file_type u32     
llama_model_loader: - kv  11:                       tokenizer.ggml.model str     
llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr     
llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr     
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr     
llama_model_loader: - kv  15:                tokenizer.ggml.bos_token_id u32     
llama_model_loader: - kv  16:                tokenizer.ggml.eos_token_id u32     
llama_model_loader: - kv  17:            tokenizer.ggml.unknown_token_id u32     
llama_model_loader: - kv  18:               general.quantization_version u32     
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q4_0:  225 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format           = GGUF V2
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 4096
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 32
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-06
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 11008
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 4096
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = mostly Q4_0
llm_load_print_meta: model params     = 6.74 B
llm_load_print_meta: model size       = 3.56 GiB (4.54 BPW) 
llm_load_print_meta: general.name   = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token  = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.11 MB
llm_load_tensors: mem required  = 3647.97 MB
..................................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: kv self size  =  256.00 MB
llama_build_graph: non-view tensors processed: 740/740
llama_new_context_with_model: compute buffer total size = 2.66 MB
AVX = 1 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 0 | AVX512_VNNI = 1 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | 
and used in the same way as in the previous example.
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
chain = LLMChain(llm=model, prompt=prompt_template, memory=memory)
print(
    chain.run(
        text="What can I see in Vienna? Propose a few locations. Names only, no details."
    )
)
  Of course! Vienna is a beautiful city with a rich history and culture. Here are some of the top tourist attractions you might want to consider visiting:
1. Schönbrunn Palace
2. St. Stephen's Cathedral
3. Hofburg Palace
4. Belvedere Palace
5. Prater Park
6. MuseumsQuartier
7. Ringstrasse
8. Vienna State Opera
9. Kunsthistorisches Museum
10. Imperial Palace
These are just a few of the many amazing places to see in Vienna. Each one has its own unique history and charm, so I hope you enjoy exploring this beautiful city!
llama_print_timings:        load time =     250.46 ms
llama_print_timings:      sample time =      56.40 ms /   144 runs   (    0.39 ms per token,  2553.37 tokens per second)
llama_print_timings: prompt eval time =    1444.25 ms /    47 tokens (   30.73 ms per token,    32.54 tokens per second)
llama_print_timings:        eval time =    8832.02 ms /   143 runs   (   61.76 ms per token,    16.19 tokens per second)
llama_print_timings:       total time =   10645.94 ms
print(chain.run(text="Tell me more about #2."))
Llama.generate: prefix-match hit
llama_print_timings:        load time =     250.46 ms
llama_print_timings:      sample time =     100.60 ms /   256 runs   (    0.39 ms per token,  2544.73 tokens per second)
llama_print_timings: prompt eval time =    5128.71 ms /   160 tokens (   32.05 ms per token,    31.20 tokens per second)
llama_print_timings:        eval time =   16193.02 ms /   255 runs   (   63.50 ms per token,    15.75 tokens per second)
llama_print_timings:       total time =   21988.57 ms
  Of course! St. Stephen's Cathedral (also known as Stephansdom) is a stunning Gothic-style cathedral located in the heart of Vienna, Austria. It is one of the most recognizable landmarks in the city and is considered a symbol of Vienna.
Here are some interesting facts about St. Stephen's Cathedral:
1. History: The construction of St. Stephen's Cathedral began in the 12th century on the site of a former Romanesque church, and it took over 600 years to complete. The cathedral has been renovated and expanded several times throughout its history, with the most significant renovation taking place in the 19th century.
2. Architecture: St. Stephen's Cathedral is built in the Gothic style, characterized by its tall spires, pointed arches, and intricate stone carvings. The cathedral features a mix of Romanesque, Gothic, and Baroque elements, making it a unique blend of styles.
3. Design: The cathedral's design is based on the plan of a cross with a long nave and two shorter arms extending from it. The main altar is