RAG over code
Open In Collab
Use caseβ
Source code analysis is one of the most popular LLM applications (e.g., GitHub Co-Pilot, Code Interpreter, Codium, and Codeium) for use-cases such as:
- Q&A over the code base to understand how it works
- Using LLMs for suggesting refactors or improvements
- Using LLMs for documenting the code

Overviewβ
The pipeline for QA over code follows the steps we do for document question answering, with some differences:
In particular, we can employ a splitting strategy that does a few things:
- Keeps each top-level function and class in the code is loaded into separate documents.
- Puts remaining into a separate document.
- Retains metadata about where each split comes from
Quickstartβ
!pip install openai tiktoken chromadb langchain
# Set env var OPENAI_API_KEY or load from a .env file
# import dotenv
# dotenv.load_dotenv()
Weβll follow the structure of this notebook and employ context aware code splitting.
Loadingβ
We will upload all python project files using the
langchain.document_loaders.TextLoader.
The following script iterates over the files in the LangChain repository
and loads every .py file (a.k.a. documents):
# from git import Repo
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import LanguageParser
from langchain.text_splitter import Language
# Clone
repo_path = "/Users/rlm/Desktop/test_repo"
# repo = Repo.clone_from("https://github.com/langchain-ai/langchain", to_path=repo_path)
We load the py code using
LanguageParser,
which will:
- Keep top-level functions and classes together (into a single document)
- Put remaining code into a separate document
- Retains metadata about where each split comes from
# Load
loader = GenericLoader.from_filesystem(
    repo_path + "/libs/langchain/langchain",
    glob="**/*",
    suffixes=[".py"],
    parser=LanguageParser(language=Language.PYTHON, parser_threshold=500),
)
documents = loader.load()
len(documents)
1293
Splittingβ
Split the Document into chunks for embedding and vector storage.
We can use RecursiveCharacterTextSplitter w/ language specified.
from langchain.text_splitter import RecursiveCharacterTextSplitter
python_splitter = RecursiveCharacterTextSplitter.from_language(
    language=Language.PYTHON, chunk_size=2000, chunk_overlap=200
)
texts = python_splitter.split_documents(documents)
len(texts)
3748
RetrievalQAβ
We need to store the documents in a way we can semantically search for their content.
The most common approach is to embed the contents of each document then store the embedding and document in a vector store.
When setting up the vectorstore retriever:
- We test max marginal relevance for retrieval
- And 8 documents returned
Go deeperβ
- Browse the > 40 vectorstores integrations here.
- See further documentation on vectorstores here.
- Browse the > 30 text embedding integrations here.
- See further documentation on embedding models here.
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
db = Chroma.from_documents(texts, OpenAIEmbeddings(disallowed_special=()))
retriever = db.as_retriever(
    search_type="mmr",  # Also test "similarity"
    search_kwargs={"k": 8},
)
Chatβ
Test chat, just as we do for chatbots.
Go deeperβ
- Browse the > 55 LLM and chat model integrations here.
- See further documentation on LLMs and chat models here.
- Use local LLMS: The popularity of PrivateGPT and GPT4All underscore the importance of running LLMs locally.
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationSummaryMemory
llm = ChatOpenAI(model_name="gpt-4")
memory = ConversationSummaryMemory(
    llm=llm, memory_key="chat_history", return_messages=True
)
qa = ConversationalRetrievalChain.from_llm(llm, retriever=retriever, memory=memory)
question = "How can I initialize a ReAct agent?"
result = qa(question)
result["answer"]
'To initialize a ReAct agent, you need to follow these steps:\n\n1. Initialize a language model `llm` of type `BaseLanguageModel`.\n\n2. Initialize a document store `docstore` of type `Docstore`.\n\n3. Create a `DocstoreExplorer` with the initialized `docstore`. The `DocstoreExplorer` is used to search for and look up terms in the document store.\n\n4. Create an array of `Tool` objects. The `Tool` objects represent the actions that the agent can perform. In the case of `ReActDocstoreAgent`, the tools must be "Search" and "Lookup" with their corresponding functions from the `DocstoreExplorer`.\n\n5. Initialize the `ReActDocstoreAgent` using the `from_llm_and_tools` method with the `llm` (language model) and `tools` as parameters.\n\n6. Initialize the `ReActChain` (which is the `AgentExecutor`) using the `ReActDocstoreAgent` and `tools` as parameters.\n\nHere is an example of how to do this:\n\n```python\nfrom langchain.chains import ReActChain, OpenAI\nfrom langchain.docstore.base import Docstore\nfrom langchain.docstore.document import Document\nfrom langchain.tools.base import BaseTool\n\n# Initialize the LLM and a docstore\nllm = OpenAI()\ndocstore = Docstore()\n\ndocstore_explorer = DocstoreExplorer(docstore)\ntools = [\n    Tool(\n        name="Search",\n        func=docstore_explorer.search,\n        description="Search for a term in the docstore.",\n    ),\n    Tool(\n        name="Lookup",\n        func=docstore_explorer.lookup,\n        description="Lookup a term in the docstore.",\n    ),\n]\nagent = ReActDocstoreAgent.from_llm_and_tools(llm, tools)\nreact = ReActChain(agent=agent, tools=tools)\n```\n\nKeep in mind that this is a simplified example and you might need to adapt it to your specific needs.'
questions = [
    "What is the class hierarchy?",
    "What classes are derived from the Chain class?",
    "What one improvement do you propose in code in relation to the class hierarchy for the Chain class?",
]
for question in questions:
    result = qa(question)
    print(f"-> **Question**: {question} \n")
    print(f"**Answer**: {result['answer']} \n")
-> **Question**: What is the class hierarchy? 
**Answer**: The class hierarchy in object-oriented programming is the structure that forms when classes are derived from other classes. The derived class is a subclass of the base class also known as the superclass. This hierarchy is formed based on the concept of inheritance in object-oriented programming where a subclass inherits the properties and functionalities of the superclass. 
In the given context, we have the following examples of class hierarchies:
1. `BaseCallbackHandler --> <name>CallbackHandler` means `BaseCallbackHandler` is a base class and `<name>CallbackHandler` (like `AimCallbackHandler`, `ArgillaCallbackHandler` etc.) are derived classes that inherit from `BaseCallbackHandler`.
2. `BaseLoader --> <name>Loader` means `BaseLoader` is a base class and `<name>Loader` (like `TextLoader`, `UnstructuredFileLoader` etc.) are derived classes that inherit from `BaseLoader`.
3. `ToolMetaclass --> BaseTool --> <name>Tool` means `ToolMetaclass` is a base class, `BaseTool` is a derived class that inherits from `ToolMetaclass`, and `<name>Tool` (like `AIPluginTool`, `BaseGraphQLTool` etc.) are further derived classes that inherit from `BaseTool`. 
-> **Question**: What classes are derived from the Chain class? 
**Answer**: The classes that are derived from the Chain class are:
1. LLMSummarizationCheckerChain
2. MapReduceChain
3. OpenAIModerationChain
4. NatBotChain
5. QAGenerationChain
6. QAWithSourcesChain
7. RetrievalQAWithSourcesChain
8. VectorDBQAWithSourcesChain
9. RetrievalQA
10. VectorDBQA
11. LLMRouterChain
12. MultiPromptChain
13. MultiRetrievalQAChain
14. MultiRouteChain
15. RouterChain
16. SequentialChain
17. SimpleSequentialChain
18. TransformChain
19. BaseConversationalRetrievalChain
20. ConstitutionalChain 
-> **Question**: What one improvement do you propose in code in relation to the class hierarchy for the Chain class? 
**Answer**: As an AI model, I don't have personal opinions. However, one suggestion could be to improve the documentation of the Chain class hierarchy. The current comments and docstrings provide some details but it could be helpful to include more explicit explanations about the hierarchy, roles of each subclass, and their relationships with one another. Also, incorporating UML diagrams or other visuals could help developers better understand the structure and interactions of the classes. 
The can look at the LangSmith trace to see what is happening under the hood:
- In particular, the code well structured and kept together in the retrieval output
- The retrieved code and chat history are passed to the LLM for answer distillation

Open source LLMsβ
We can use Code LLaMA via LLamaCPP or Ollama integration.
Note: be sure to upgrade llama-cpp-python in order to use the new
gguf file
format.
CMAKE_ARGS="-DLLAMA_METAL=on" FORCE_CMAKE=1 /Users/rlm/miniforge3/envs/llama2/bin/pip install -U llama-cpp-python --no-cache-dir
Check out the latest code-llama models here.
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.chains import ConversationalRetrievalChain, LLMChain
from langchain.llms import LlamaCpp
from langchain.memory import ConversationSummaryMemory
from langchain.prompts import PromptTemplate
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
llm = LlamaCpp(
    model_path="/Users/rlm/Desktop/Code/llama/code-llama/codellama-13b-instruct.Q4_K_M.gguf",
    n_ctx=5000,
    n_gpu_layers=1,
    n_batch=512,
    f16_kv=True,  # MUST set to True, otherwise you will run into problem after a couple of calls
    callback_manager=callback_manager,
    verbose=True,
)
llama_model_loader: loaded meta data with 17 key-value pairs and 363 tensors from /Users/rlm/Desktop/Code/llama/code-llama/codellama-13b-instruct.Q4_K_M.gguf (version GGUF V1 (latest))
llama_model_loader: - tensor    0:                token_embd.weight q4_0     [  5120, 32016,     1,     1 ]
llama_model_loader: - tensor    1:               output_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor    2:                    output.weight f16      [  5120, 32016,     1,     1 ]
llama_model_loader: - tensor    3:              blk.0.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor    4:              blk.0.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor    5:              blk.0.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor    6:         blk.0.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor    7:            blk.0.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor    8:            blk.0.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor    9:              blk.0.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   10:           blk.0.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   11:            blk.0.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   12:              blk.1.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   13:              blk.1.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   14:              blk.1.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   15:         blk.1.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   16:            blk.1.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   17:            blk.1.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   18:              blk.1.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   19:           blk.1.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   20:            blk.1.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   21:              blk.2.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   22:              blk.2.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   23:              blk.2.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   24:         blk.2.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   25:            blk.2.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   26:            blk.2.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   27:              blk.2.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   28:           blk.2.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   29:            blk.2.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   30:              blk.3.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   31:              blk.3.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   32:              blk.3.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   33:         blk.3.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   34:            blk.3.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   35:            blk.3.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   36:              blk.3.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   37:           blk.3.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   38:            blk.3.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   39:              blk.4.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   40:              blk.4.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   41:              blk.4.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   42:         blk.4.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   43:            blk.4.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   44:            blk.4.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   45:              blk.4.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   46:           blk.4.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   47:            blk.4.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   48:              blk.5.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   49:              blk.5.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   50:              blk.5.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   51:         blk.5.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   52:            blk.5.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   53:            blk.5.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   54:              blk.5.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   55:           blk.5.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   56:            blk.5.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   57:              blk.6.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   58:              blk.6.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   59:              blk.6.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   60:         blk.6.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   61:            blk.6.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   62:            blk.6.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   63:              blk.6.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   64:           blk.6.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   65:            blk.6.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   66:              blk.7.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   67:              blk.7.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   68:              blk.7.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   69:         blk.7.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   70:            blk.7.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   71:            blk.7.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   72:              blk.7.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   73:           blk.7.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   74:            blk.7.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   75:              blk.8.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   76:              blk.8.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   77:              blk.8.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   78:         blk.8.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   79:            blk.8.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   80:            blk.8.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   81:              blk.8.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   82:           blk.8.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   83:            blk.8.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   84:              blk.9.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   85:              blk.9.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   86:              blk.9.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   87:         blk.9.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   88:            blk.9.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   89:            blk.9.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   90:              blk.9.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   91:           blk.9.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   92:            blk.9.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   93:             blk.10.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   94:             blk.10.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   95:             blk.10.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   96:        blk.10.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   97:           blk.10.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   98:           blk.10.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   99:             blk.10.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  100:          blk.10.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  101:           blk.10.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  102:             blk.11.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  103:             blk.11.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  104:             blk.11.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  105:        blk.11.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  106:           blk.11.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  107:           blk.11.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  108:             blk.11.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  109:          blk.11.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  110:           blk.11.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  111:             blk.12.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  112:             blk.12.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  113:             blk.12.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  114:        blk.12.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  115:           blk.12.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  116:           blk.12.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  117:             blk.12.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  118:          blk.12.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  119:           blk.12.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  120:             blk.13.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  121:             blk.13.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  122:             blk.13.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  123:        blk.13.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  124:           blk.13.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  125:           blk.13.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  126:             blk.13.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  127:          blk.13.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  128:           blk.13.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  129:             blk.14.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  130:             blk.14.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  131:             blk.14.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  132:        blk.14.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  133:           blk.14.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  134:           blk.14.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  135:             blk.14.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  136:          blk.14.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  137:           blk.14.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  138:             blk.15.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  139:             blk.15.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  140:             blk.15.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  141:        blk.15.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  142:           blk.15.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  143:           blk.15.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  144:             blk.15.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  145:          blk.15.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  146:           blk.15.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  147:             blk.16.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  148:             blk.16.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  149:             blk.16.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  150:        blk.16.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  151:           blk.16.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  152:           blk.16.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  153:             blk.16.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  154:          blk.16.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  155:           blk.16.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  156:             blk.17.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  157:             blk.17.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  158:             blk.17.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  159:        blk.17.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  160:           blk.17.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  161:           blk.17.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  162:             blk.17.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  163:          blk.17.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  164:           blk.17.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  165:             blk.18.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  166:             blk.18.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  167:             blk.18.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  168:        blk.18.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  169:           blk.18.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  170:           blk.18.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  171:             blk.18.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  172:          blk.18.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  173:           blk.18.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  174:             blk.19.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  175:             blk.19.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  176:             blk.19.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  177:        blk.19.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  178:           blk.19.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  179:           blk.19.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  180:             blk.19.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  181:          blk.19.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  182:           blk.19.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  183:             blk.20.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  184:             blk.20.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  185:             blk.20.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  186:        blk.20.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  187:           blk.20.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  188:           blk.20.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  189:             blk.20.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  190:          blk.20.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  191:           blk.20.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  192:             blk.21.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  193:             blk.21.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  194:             blk.21.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  195:        blk.21.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  196:           blk.21.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  197:           blk.21.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  198:             blk.21.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  199:          blk.21.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  200:           blk.21.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  201:             blk.22.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  202:             blk.22.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  203:             blk.22.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  204:        blk.22.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  205:           blk.22.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  206:           blk.22.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  207:             blk.22.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  208:          blk.22.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  209:           blk.22.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  210:             blk.23.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  211:             blk.23.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  212:             blk.23.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  213:        blk.23.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  214:           blk.23.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  215:           blk.23.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  216:             blk.23.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  217:          blk.23.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  218:           blk.23.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  219:             blk.24.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  220:             blk.24.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  221:             blk.24.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  222:        blk.24.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  223:           blk.24.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  224:           blk.24.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  225:             blk.24.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  226:          blk.24.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  227:           blk.24.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  228:             blk.25.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  229:             blk.25.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  230:             blk.25.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  231:        blk.25.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  232:           blk.25.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  233:           blk.25.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  234:             blk.25.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  235:          blk.25.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  236:           blk.25.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  237:             blk.26.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  238:             blk.26.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  239:             blk.26.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  240:        blk.26.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  241:           blk.26.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  242:           blk.26.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  243:             blk.26.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  244:          blk.26.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  245:           blk.26.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  246:             blk.27.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  247:             blk.27.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  248:             blk.27.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  249:        blk.27.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  250:           blk.27.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  251:           blk.27.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  252:             blk.27.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  253:          blk.27.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  254:           blk.27.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  255:             blk.28.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  256:             blk.28.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  257:             blk.28.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  258:        blk.28.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  259:           blk.28.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  260:           blk.28.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  261:             blk.28.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  262:          blk.28.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  263:           blk.28.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  264:             blk.29.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  265:             blk.29.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  266:             blk.29.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  267:        blk.29.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  268:           blk.29.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  269:           blk.29.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  270:             blk.29.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  271:          blk.29.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  272:           blk.29.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  273:             blk.30.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  274:             blk.30.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  275:             blk.30.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  276:        blk.30.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  277:           blk.30.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  278:           blk.30.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  279:             blk.30.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  280:          blk.30.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  281:           blk.30.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  282:             blk.31.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  283:             blk.31.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  284:             blk.31.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  285:        blk.31.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  286:           blk.31.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  287:           blk.31.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  288:             blk.31.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  289:          blk.31.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  290:           blk.31.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  291:             blk.32.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  292:             blk.32.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  293:             blk.32.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  294:        blk.32.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  295:           blk.32.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  296:           blk.32.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  297:             blk.32.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  298:          blk.32.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  299:           blk.32.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  300:             blk.33.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  301:             blk.33.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  302:             blk.33.attn_v.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  303:        blk.33.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  304:           blk.33.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  305:           blk.33.ffn_down.weight q4_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  306:             blk.33.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  307:          blk.33.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  308:           blk.33.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  309:             blk.34.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  310:             blk.34.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  311:             blk.34.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  312:        blk.34.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  313:           blk.34.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  314:           blk.34.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  315:             blk.34.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  316:          blk.34.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  317:           blk.34.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  318:             blk.35.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  319:             blk.35.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  320:             blk.35.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  321:        blk.35.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  322:           blk.35.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  323:           blk.35.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  324:             blk.35.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  325:          blk.35.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  326:           blk.35.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  327:             blk.36.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  328:             blk.36.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  329:             blk.36.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  330:        blk.36.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  331:           blk.36.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  332:           blk.36.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  333:             blk.36.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  334:          blk.36.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  335:           blk.36.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  336:             blk.37.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  337:             blk.37.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  338:             blk.37.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  339:        blk.37.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  340:           blk.37.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  341:           blk.37.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  342:             blk.37.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  343:          blk.37.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  344:           blk.37.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  345:             blk.38.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  346:             blk.38.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  347:             blk.38.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  348:        blk.38.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  349:           blk.38.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  350:           blk.38.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  351:             blk.38.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  352:          blk.38.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  353:           blk.38.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  354:             blk.39.attn_q.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  355:             blk.39.attn_k.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  356:             blk.39.attn_v.weight q6_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  357:        blk.39.attn_output.weight q4_K     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  358:           blk.39.ffn_gate.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  359:           blk.39.ffn_down.weight q6_K     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  360:             blk.39.ffn_up.weight q4_K     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  361:          blk.39.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  362:           blk.39.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - kv   0:                       general.architecture str     
llama_model_loader: - kv   1:                               general.name str     
llama_model_loader: - kv   2:                       llama.context_length u32     
llama_model_loader: - kv   3:                     llama.embedding_length u32     
llama_model_loader: - kv   4:                          llama.block_count u32     
llama_model_loader: - kv   5:                  llama.feed_forward_length u32     
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32     
llama_model_loader: - kv   7:                 llama.attention.head_count u32     
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32     
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32     
llama_model_loader: - kv  10:                       llama.rope.freq_base f32     
llama_model_loader: - kv  11:                          general.file_type u32     
llama_model_loader: - kv  12:                       tokenizer.ggml.model str     
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr     
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr     
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr     
llama_model_loader: - kv  16:               general.quantization_version u32     
llama_model_loader: - type  f32:   81 tensors
llama_model_loader: - type  f16:    1 tensors
llama_model_loader: - type q4_0:    1 tensors
llama_model_loader: - type q4_K:  240 tensors
llama_model_loader: - type q6_K:   40 tensors
llm_load_print_meta: format         = GGUF V1 (latest)
llm_load_print_meta: arch           = llama
llm_load_print_meta: vocab type     = SPM
llm_load_print_meta: n_vocab        = 32016
llm_load_print_meta: n_merges       = 0
llm_load_print_meta: n_ctx_train    = 16384
llm_load_print_meta: n_ctx          = 5000
llm_load_print_meta: n_embd         = 5120
llm_load_print_meta: n_head         = 40
llm_load_print_meta: n_head_kv      = 40
llm_load_print_meta: n_layer        = 40
llm_load_print_meta: n_rot          = 128
llm_load_print_meta: n_gqa          = 1
llm_load_print_meta: f_norm_eps     = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: n_ff           = 13824
llm_load_print_meta: freq_base      = 1000000.0
llm_load_print_meta: freq_scale     = 1
llm_load_print_meta: model type     = 13B
llm_load_print_meta: model ftype    = mostly Q4_K - Medium
llm_load_print_meta: model size     = 13.02 B
llm_load_print_meta: general.name   = LLaMA
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token  = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.11 MB
llm_load_tensors: mem required  = 7685.49 MB (+ 3906.25 MB per state)
.................................................................................................
llama_new_context_with_model: kv self size  = 3906.25 MB
ggml_metal_init: allocating
ggml_metal_init: loading '/Users/rlm/miniforge3/envs/llama2/lib/python3.9/site-packages/llama_cpp/ggml-metal.metal'
ggml_metal_init: loaded kernel_add                            0x12126dd00 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_add_row                        0x12126d610 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_mul                            0x12126f2a0 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_mul_row                        0x12126f500 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_scale                          0x12126f760 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_silu                           0x12126fe40 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_relu                           0x1212700a0 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_gelu                           0x121270300 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_soft_max                       0x121270560 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_diag_mask_inf                  0x1212707c0 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_get_rows_f16                   0x121270a20 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_get_rows_q4_0                  0x121270c80 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_get_rows_q4_1                  0x121270ee0 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_get_rows_q8_0                  0x121271140 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_get_rows_q2_K                  0x1212713a0 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_get_rows_q3_K                  0x121271600 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_get_rows_q4_K                  0x121271860 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_get_rows_q5_K                  0x121271ac0 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_get_rows_q6_K                  0x121271d20 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_rms_norm                       0x121271f80 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_norm                           0x1212721e0 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_mul_mat_f16_f32                0x121272440 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_mul_mat_q4_0_f32               0x1212726a0 | th_max =  896 | th_width =   32
ggml_metal_init: loaded kernel_mul_mat_q4_1_f32               0x121272900 | th_max =  896 | th_width =   32
ggml_metal_init: loaded kernel_mul_mat_q8_0_f32               0x121272b60 | th_max =  768 | th_width =   32
ggml_metal_init: loaded kernel_mul_mat_q2_K_f32               0x121272dc0 | th_max =  640 | th_width =   32
ggml_metal_init: loaded kernel_mul_mat_q3_K_f32               0x121273020 | th_max =  704 | th_width =   32
ggml_metal_init: loaded kernel_mul_mat_q4_K_f32               0x121273280 | th_max =  576 | th_width =   32
ggml_metal_init: loaded kernel_mul_mat_q5_K_f32               0x1212734e0 | th_max =  576 | th_width =   32
ggml_metal_init: loaded kernel_mul_mat_q6_K_f32               0x121273740 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_mul_mm_f16_f32                 0x1212739a0 | th_max =  768 | th_width =   32
ggml_metal_init: loaded kernel_mul_mm_q4_0_f32                0x121273c00 | th_max =  768 | th_width =   32
ggml_metal_init: loaded kernel_mul_mm_q8_0_f32                0x121273e60 | th_max =  768 | th_width =   32
ggml_metal_init: loaded kernel_mul_mm_q4_1_f32                0x1212740c0 | th_max =  768 | th_width =   32
ggml_metal_init: loaded kernel_mul_mm_q2_K_f32                0x121274320 | th_max =  768 | th_width =   32
ggml_metal_init: loaded kernel_mul_mm_q3_K_f32                0x121274580 | th_max =  768 | th_width =   32
ggml_metal_init: loaded kernel_mul_mm_q4_K_f32                0x1212747e0 | th_max =  768 | th_width =   32
ggml_metal_init: loaded kernel_mul_mm_q5_K_f32                0x121274a40 | th_max =  704 | th_width =   32
ggml_metal_init: loaded kernel_mul_mm_q6_K_f32                0x121274ca0 | th_max =  704 | th_width =   32
ggml_metal_init: loaded kernel_rope                           0x121274f00 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_alibi_f32                      0x121275160 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_cpy_f32_f16                    0x1212753c0 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_cpy_f32_f32                    0x121275620 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_cpy_f16_f16                    0x121275880 | th_max = 1024 | th_width =   32
ggml_metal_init: recommendedMaxWorkingSetSize  = 21845.34 MB
ggml_metal_init: hasUnifiedMemory              = true
ggml_metal_init: maxTransferRate               = built-in GPU
llama_new_context_with_model: compute buffer total size =  442.03 MB
llama_new_context_with_model: max tensor size =   312.66 MB
ggml_metal_add_buffer: allocated 'data            ' buffer, size =  7686.00 MB, (20243.77 / 21845.34)
ggml_metal_add_buffer: allocated 'eval            ' buffer, size =     1.42 MB, (20245.19 / 21845.34)
ggml_metal_add_buffer: allocated 'kv              ' buffer, size =  3908.25 MB, (24153.44 / 21845.34), warning: current allocated size is greater than the recommended max working set size
AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 | 
ggml_metal_add_buffer: allocated 'alloc           ' buffer, size =   440.64 MB, (24594.08 / 21845.34), warning: current allocated size is greater than the recommended max working set size
llm(
    "Question: In bash, how do I list all the text files in the current directory that have been modified in the last month? Answer:"
)
Llama.generate: prefix-match hit
llama_print_timings:        load time =  1074.43 ms
llama_print_timings:      sample time =   180.71 ms /   256 runs   (    0.71 ms per token,  1416.67 tokens per second)
llama_print_timings: prompt eval time =     0.00 ms /     1 tokens (    0.00 ms per token,      inf tokens per second)
llama_print_timings:        eval time =  9593.04 ms /   256 runs   (   37.47 ms per token,    26.69 tokens per second)
llama_print_timings:       total time = 10139.91 ms
 You can use the find command with a few options to this task. Here is an example of how you might go about it:
find . -type f -mtime +28 -exec ls {} \;
This command only for plain files (not), and limits the search to files that were more than 28 days ago, then the "ls" command on each file found. The {} is a for the filenames found by find that are being passed to the -exec option of find.
You can also use find in with other unix utilities like sort and grep to the list of files before they are:
find . -type f -mtime +28 | sort | grep pattern
This will find all plain files that match a given pattern, then sort the listically and filter it for only the matches.
Answer: `find` is pretty with its search. The should work as well:
\begin{code}
ls -l $(find . -mtime +28)
\end{code}
(It's a bad idea to parse output from `ls`, though, as you may
' You can use the find command with a few options to this task. Here is an example of how you might go about it:\n\nfind . -type f -mtime +28 -exec ls {} \\;\nThis command only for plain files (not), and limits the search to files that were more than 28 days ago, then the "ls" command on each file found. The {} is a for the filenames found by find that are being passed to the -exec option of find.\n\nYou can also use find in with other unix utilities like sort and grep to the list of files before they are:\n\nfind . -type f -mtime +28 | sort | grep pattern\nThis will find all plain files that match a given pattern, then sort the listically and filter it for only the matches.\n\nAnswer: `find` is pretty with its search. The should work as well:\n\n\\begin{code}\nls -l $(find . -mtime +28)\n\\end{code}\n\n(It\'s a bad idea to parse output from `ls`, though, as you may'
from langchain.chains.question_answering import load_qa_chain
# Prompt
template = """Use the following pieces of context to answer the question at the end. 
If you don't know the answer, just say that you don't know, don't try to make up an answer. 
Use three sentences maximum and keep the answer as concise as possible. 
{context}
Question: {question}
Helpful Answer:"""
QA_CHAIN_PROMPT = PromptTemplate(
    input_variables=["context", "question"],
    template=template,
)
We can also use the LangChain Prompt Hub to store and fetch prompts.
This will work with your LangSmith API key.
Letβs try with a default RAG prompt, here.
from langchain import hub
QA_CHAIN_PROMPT = hub.pull("rlm/rag-prompt-default")
# Docs
question = "How can I initialize a ReAct agent?"
docs = retriever.get_relevant_documents(question)
# Chain
chain = load_qa_chain(llm, chain_type="stuff", prompt=QA_CHAIN_PROMPT)
# Run
chain({"input_documents": docs, "question": question}, return_only_outputs=True)
Llama.generate: prefix-match hit
llama_print_timings:        load time =  1074.43 ms
llama_print_timings:      sample time =    65.46 ms /    94 runs   (    0.70 ms per token,  1435.95 tokens per second)
llama_print_timings: prompt eval time = 15975.57 ms /  1408 tokens (   11.35 ms per token,    88.13 tokens per second)
llama_print_timings:        eval time =  4772.57 ms /    93 runs   (   51.32 ms per token,    19.49 tokens per second)
llama_print_timings:       total time = 20959.57 ms
 You can use the `ReActAgent` class and pass it the desired tools as, for example, you would do like this to create an agent with the `Lookup` and `Search` tool:
```python
from langchain.agents.react import ReActAgent
from langchain.tools.lookup import Lookup
from langchain.tools.search import Search
ReActAgent(Lookup(), Search())
```
{'output_text': ' You can use the `ReActAgent` class and pass it the desired tools as, for example, you would do like this to create an agent with the `Lookup` and `Search` tool:\n```python\nfrom langchain.agents.react import ReActAgent\nfrom langchain.tools.lookup import Lookup\nfrom langchain.tools.search import Search\nReActAgent(Lookup(), Search())\n```'}
Hereβs the trace RAG, showing the retrieved docs.